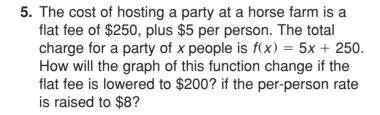
LESSOI 5-0

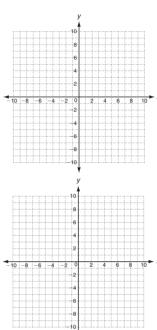
LESSON Practice B

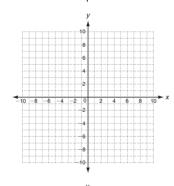
5-9 Transforming Linear Functions

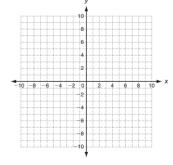
Graph f(x) and g(x). Then describe the transformation from the graph of f(x) to the graph of g(x).

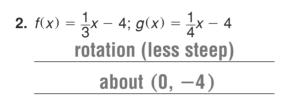
1.
$$f(x) = x$$
; $g(x) = x + 3$

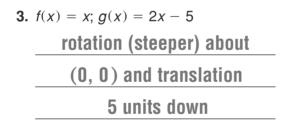

2.
$$f(x) = \frac{1}{3}x - 4$$
; $g(x) = \frac{1}{4}x - 4$

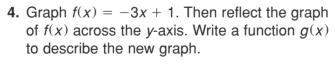

3.
$$f(x) = x$$
; $g(x) = 2x - 5$


-			

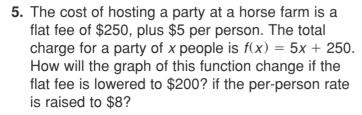

4. Graph f(x) = -3x + 1. Then reflect the graph of f(x) across the *y*-axis. Write a function g(x) to describe the new graph.

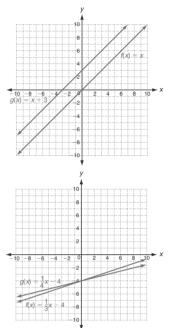

Practice B

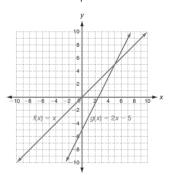

Transforming Linear Functions

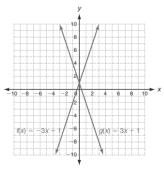

Graph f(x) and g(x). Then describe the transformation from the graph of f(x) to the graph of g(x).

1.
$$f(x) = x$$
; $g(x) = x + 3$


translation 3 units up




$$g(x) = 3x + 1$$



The graph will be translated 50 units down.

The graph will be rotated about (0, 250) and become steeper.

LESSON Problem Solving

Transforming Linear Functions

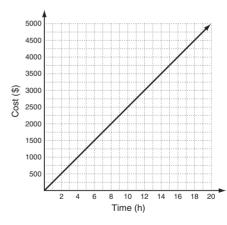
Write the correct answer.

- 1. The number of camp counselors at a day camp must include 1 counselor for every 8 campers, plus 3 camp directors. The function describing the number of counselors is $f(x) = \frac{1}{8}x + 3$ where x is the number of campers. How will the graph change if the number of camp directors is reduced to 2?
- 3. Owen earns a base salary plus a commission that is a percent of his total sales. His total weekly pay is described by f(x) = 0.15x + 325, where x is his total sales in dollars. What is the change in Owen's salary plan if his total weekly pay function changes to g(x) = 0.20x + 325?
- 2. A city water service has a base cost of \$12 per month plus \$1.50 per hundred cubic feet (HCF) of water. Write a function f(x) to represent the cost of water as a function of x, amount used. Then write a second function g(x) to represent the cost if the rate rises to \$1.60 per HCF.

How would the graph of g(x) compare to the graph of f(x)?

An attorney charges \$250 per hour. The graph represents the cost of the attorney as a function of time. Select the best answer.

4. When a traveling fee is added to the attorney's rate for cases outside the city limits, the graph is translated up 50 units. What function *h*(*x*) would describe the attorney's rate with the traveling fee?


A
$$h(x) = 250x - 50$$

B
$$h(x) = 250x + 50$$

C
$$h(x) = 200x$$

D
$$h(x) = 300x$$

- 5. The attorney's paralegal has an hourly rate of \$150. How would you transform the graph of f(x) into a graph for the paralegal's rate?
 - **F** Reflect it over the *y*-axis.
 - G Translate it down 100 units.
 - **H** Translate it to the left 100 units.
 - **J** Rotate it clockwise about (0, 0).

- **6.** Which hourly rate would NOT make the attorney's graph steeper?
 - **A** \$225
- **C** \$300
- **B** \$275
- **D** \$325

Problem Solving

Transforming Linear Functions

Write the correct answer.

1. The number of camp counselors at a day camp must include 1 counselor for every 8 campers, plus 3 camp directors. The function describing the number of counselors is $f(x) = \frac{1}{8}x + 3$ where x is the number of campers. How will the graph change if the number of camp directors is reduced to 2?

translation 1 unit down

3. Owen earns a base salary plus a commission that is a percent of his total sales. His total weekly pay is described by f(x) = 0.15x + 325, where x is his total sales in dollars. What is the change in Owen's salary plan if his total weekly pay function changes to g(x) = 0.20x + 325?

His commission is

raised to 20%.

2. A city water service has a base cost of \$12 per month plus \$1.50 per hundred cubic feet (HCF) of water. Write a function f(x) to represent the cost of water as a function of x, amount used. Then write a second function g(x) to represent the cost if the rate rises to \$1.60 per HCF.

f(x) = 1.50x + 12

g(x) = 1.60x + 12

How would the graph of g(x) compare to the graph of f(x)?

it would be rotated

about (0, 12), steeper.

An attorney charges \$250 per hour. The graph represents the cost of the attorney as a function of time. Select the best answer.

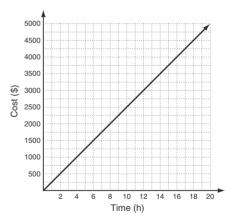
4. When a traveling fee is added to the attorney's rate for cases outside the city limits, the graph is translated up 50 units. What function *h*(*x*) would describe the attorney's rate with the traveling fee?

A h(x) = 250x - 50

 $\mathbf{B} h(x) = 250x + 50$

C h(x) = 200x

D h(x) = 300x


5. The attorney's paralegal has an hourly rate of \$150. How would you transform the graph of f(x) into a graph for the paralegal's rate?

F Reflect it over the *y*-axis.

G Translate it down 100 units.

H Translate it to the left 100 units.

J Rotate it clockwise about (0, 0).

6. Which hourly rate would NOT make the attorney's graph steeper?

(A) \$225

C \$300

B \$275

D \$325